[FEAT] ADD lighting method

This commit is contained in:
2024-02-20 09:14:01 +01:00
parent ee5b2c1c95
commit aba3450f2e
7 changed files with 278 additions and 39 deletions

View File

@@ -45,15 +45,13 @@ Color::Color(void) : m_red(0), m_green(0), m_blue(0)
/* ------------------------------------------------------------------------- */
Color::Color(const Color &a_copy) :
m_red(a_copy.m_red), m_green(a_copy.m_green), m_blue(a_copy.m_blue)
Color::Color(const Color &a_copy) : m_red(a_copy.m_red), m_green(a_copy.m_green), m_blue(a_copy.m_blue)
{
}
/* ------------------------------------------------------------------------- */
Color::Color(double a_red, double a_green, double a_blue) :
m_red(a_red), m_green(a_green), m_blue(a_blue)
Color::Color(double a_red, double a_green, double a_blue) : m_red(a_red), m_green(a_green), m_blue(a_blue)
{
}
@@ -79,9 +77,9 @@ const Color &Color::operator=(const Color &a_color)
return *this;
}
m_red = a_color.m_red;
m_red = a_color.m_red;
m_green = a_color.m_green;
m_blue = a_color.m_blue;
m_blue = a_color.m_blue;
return *this;
}
@@ -114,9 +112,9 @@ const Color Color::operator*(const Color &a_color) const
// Using the hadamard product.
double the_red, the_green, the_blue;
the_red = m_red * a_color.m_red;
the_red = m_red * a_color.m_red;
the_green = m_green * a_color.m_green;
the_blue = m_blue * a_color.m_blue;
the_blue = m_blue * a_color.m_blue;
return Color(the_red, the_green, the_blue);
}
@@ -217,3 +215,38 @@ uint8_t Color::color_to_integer(double a_color) const
return the_value;
}
/* ------------------------------------------------------------------------- */
Color Color::Black(void)
{
return Color(0, 0, 0);
}
/* ------------------------------------------------------------------------- */
Color Color::White(void)
{
return Color(1, 1, 1);
}
/* ------------------------------------------------------------------------- */
Color Color::Red(void)
{
return Color(1, 0, 0);
}
/* ------------------------------------------------------------------------- */
Color Color::Green(void)
{
return Color(0, 1, 0);
}
/* ------------------------------------------------------------------------- */
Color blue(void)
{
return Color(0, 0, 1);
}

View File

@@ -63,6 +63,12 @@ namespace Raytracer
uint8_t green_to_integer(void) const;
uint8_t blue_to_integer(void) const;
static Color Black(void);
static Color White(void);
static Color Red(void);
static Color Green(void);
static Color Blue(void);
private:
uint8_t color_to_integer(double a_color) const;

View File

@@ -28,6 +28,8 @@
/* ------------------------------------------------------------------------- */
#include <cmath>
#include "common.h"
#include "material.h"
@@ -111,3 +113,52 @@ void Material::set_shininess(double a_value)
{
m_shininess = a_value;
}
/* ------------------------------------------------------------------------- */
Color Material::lighting(const PointLight &a_light, const Tuple &a_point, const Tuple &an_eyev, const Tuple &a_normalv)
{
Color the_effective_color;
Tuple the_light_v, the_reflect_v;
Color the_ambient, the_diffuse, the_specular;
// Combine the surface color with the light's color
the_effective_color = m_color * a_light.intensity();
// Find the direction to the light source
the_light_v = (a_light.position() - a_point).normalize();
// Compute the ambient contribution
the_ambient = the_effective_color * m_ambient;
// light_dot_normal represents the cosine of the angle between the light vector and the normal vector.
// a negative number means the light is on the other side of the surface.
double the_light_dot_normal = the_light_v.dot(a_normalv);
if (the_light_dot_normal < 0)
{
the_diffuse = Color::Black();
the_specular = Color::Black();
}
else
{
the_diffuse = the_effective_color * m_diffuse * the_light_dot_normal;
// reflect_dot_eye represent the consine of the angle between reflection vector and the eye vector.
// A negative number means the light reflects away from the eye.
the_reflect_v = (-the_light_v).reflect(a_normalv);
double the_reflect_dot_eye = the_reflect_v.dot(an_eyev);
if (the_reflect_dot_eye <= 0)
{
the_specular = Color::Black();
}
else
{
// Compute the specular contribution
double the_factor = pow(the_reflect_dot_eye, m_shininess);
the_specular = a_light.intensity() * m_specular * the_factor;
}
}
return the_ambient + the_diffuse + the_specular;
}

View File

@@ -29,6 +29,8 @@
/* ------------------------------------------------------------------------- */
#include "color.h"
#include "point-light.h"
#include "tuple.h"
/* ------------------------------------------------------------------------- */
@@ -55,6 +57,8 @@ namespace Raytracer
const double &shininess(void) const;
void set_shininess(double a_value);
Color lighting(const PointLight &a_light, const Tuple &a_point, const Tuple &an_eyev, const Tuple &a_normalv);
private:
Color m_color;
double m_ambient;

View File

@@ -286,14 +286,14 @@ void Tuple::set_w(double a_w)
/* ------------------------------------------------------------------------- */
bool Tuple::is_point(void)
bool Tuple::is_point(void) const
{
return double_equal(m_w, kRaytracerTuplePoint);
}
/* ------------------------------------------------------------------------- */
bool Tuple::is_vector(void)
bool Tuple::is_vector(void) const
{
return double_equal(m_w, kRaytracerTupleVector);
}
@@ -307,7 +307,7 @@ double Tuple::magnitude(void) const
/* ------------------------------------------------------------------------- */
Tuple Tuple::normalize(void)
Tuple Tuple::normalize(void) const
{
double the_magnitude = magnitude();
@@ -316,14 +316,14 @@ Tuple Tuple::normalize(void)
/* ------------------------------------------------------------------------- */
double Tuple::dot(const Tuple &a_tuple)
double Tuple::dot(const Tuple &a_tuple) const
{
return m_x * a_tuple.m_x + m_y * a_tuple.m_y + m_z * a_tuple.m_z + m_w * a_tuple.m_w;
}
/* ------------------------------------------------------------------------- */
Tuple Tuple::cross(const Tuple &a_tuple)
Tuple Tuple::cross(const Tuple &a_tuple) const
{
return Vector(m_y * a_tuple.m_z - m_z * a_tuple.m_y, m_z * a_tuple.m_x - m_x * a_tuple.m_z,
m_x * a_tuple.m_y - m_y * a_tuple.m_x);
@@ -331,7 +331,7 @@ Tuple Tuple::cross(const Tuple &a_tuple)
/* ------------------------------------------------------------------------- */
Tuple Tuple::reflect(const Tuple &a_normal)
Tuple Tuple::reflect(const Tuple &a_normal) const
{
return *this - a_normal * 2 * dot(a_normal);
}

View File

@@ -78,16 +78,16 @@ namespace Raytracer
void set_z(double a_z);
void set_w(double a_w);
bool is_point(void);
bool is_vector(void);
bool is_point(void) const;
bool is_vector(void) const;
double magnitude(void) const;
Tuple normalize(void);
Tuple normalize(void) const;
double dot(const Tuple &a_tuple);
Tuple cross(const Tuple &a_tuple);
double dot(const Tuple &a_tuple) const;
Tuple cross(const Tuple &a_tuple) const;
Tuple reflect(const Tuple &a_normal);
Tuple reflect(const Tuple &a_normal) const;
private:
void set_at_index(uint8_t an_index, double a_value);

View File

@@ -38,10 +38,10 @@ SCENARIO("The normal on a sphere at point a on the x axis", "[features/spheres.f
GIVEN("s <- sphere()")
{
Sphere s;
WHEN("n <- normal_at(s, point(1,0,0))")
WHEN("n <- normal_at(s, point(1, 0, 0))")
{
Tuple n = s.normal_at(Tuple::Point(1, 0, 0));
THEN("n = vector(1,0,0)")
THEN("n = vector(1, 0, 0)")
{
REQUIRE(n == Tuple::Vector(1, 0, 0));
}
@@ -56,10 +56,10 @@ SCENARIO("The normal on a sphere at point a on the y axis", "[features/spheres.f
GIVEN("s <- sphere()")
{
Sphere s;
WHEN("n <- normal_at(s, point(0,1,0))")
WHEN("n <- normal_at(s, point(0, 1, 0))")
{
Tuple n = s.normal_at(Tuple::Point(0, 1, 0));
THEN("n = vector(0,1,0)")
THEN("n = vector(0, 1, 0)")
{
REQUIRE(n == Tuple::Vector(0, 1, 0));
}
@@ -74,10 +74,10 @@ SCENARIO("The normal on a sphere at point a on the z axis", "[features/spheres.f
GIVEN("s <- sphere()")
{
Sphere s;
WHEN("n <- normal_at(s, point(0,0,1))")
WHEN("n <- normal_at(s, point(0, 0, 1))")
{
Tuple n = s.normal_at(Tuple::Point(0, 0, 1));
THEN("n = vector(0,0,1)")
THEN("n = vector(0, 0, 1)")
{
REQUIRE(n == Tuple::Vector(0, 0, 1));
}
@@ -92,10 +92,10 @@ SCENARIO("The normal on a sphere at a nonaxial point", "[features/spheres.featur
GIVEN("s <- sphere()")
{
Sphere s;
WHEN("n <- normal_at(s, point(sqrt(3)/3,sqrt(3)/3,sqrt(3)/3))")
WHEN("n <- normal_at(s, point(sqrt(3)/3, sqrt(3)/3, sqrt(3)/3))")
{
Tuple n = s.normal_at(Tuple::Point(sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3));
THEN("n = vector(sqrt(3)/3,sqrt(3)/3,sqrt(3)/3))")
THEN("n = vector(sqrt(3)/3, sqrt(3)/3, sqrt(3)/3))")
{
REQUIRE(n == Tuple::Vector(sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3));
}
@@ -110,7 +110,7 @@ SCENARIO("The normal is a normalized vector", "[features/spheres.feature]")
GIVEN("s <- sphere()")
{
Sphere s;
WHEN("n <- normal_at(s, point(sqrt(3)/3,sqrt(3)/3,sqrt(3)/3))")
WHEN("n <- normal_at(s, point(sqrt(3)/3, sqrt(3)/3, sqrt(3)/3))")
{
Tuple n = s.normal_at(Tuple::Point(sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3));
THEN("n = normalize(n)")
@@ -128,13 +128,13 @@ SCENARIO("Computing the normal on a translated sphere", "[features/spheres.featu
GIVEN("s <- sphere()")
{
Sphere s;
AND_GIVEN("set_transform(s, translation(0,1,0))")
AND_GIVEN("set_transform(s, translation(0, 1, 0))")
{
s.set_transform(Matrix::translation(0, 1, 0));
WHEN("n <- normal_at(s,point(0,1.70711,-0.70711))")
WHEN("n <- normal_at(s,point(0, 1.70711, -0.70711))")
{
Tuple n = s.normal_at(Tuple::Point(0, 1.70711, -0.70711));
THEN("n = vector(0,0.70711, -0.70711)")
THEN("n = vector(0, 0.70711, -0.70711)")
{
REQUIRE(n == Tuple::Vector(0, 0.70711, -0.70711));
}
@@ -150,13 +150,13 @@ SCENARIO("Computing the normal on a transformed sphere", "[features/spheres.feat
GIVEN("s <- sphere()")
{
Sphere s;
AND_GIVEN("m <- scaling(1,0.5,1) * rotation_z(pi/5)")
AND_GIVEN("m <- scaling(1, 0. 5,1) * rotation_z(pi/5)")
{
Matrix m = Matrix::scaling(1, 0.5, 1) * Matrix::rotation_z(std::numbers::pi / 5);
AND_GIVEN("set_transform(s, m)")
{
s.set_transform(m);
WHEN("n <- normal_at(s,point(0,sqrt(2)/2,sqrt(2)/2))")
WHEN("n <- normal_at(s,point(0, sqrt(2)/2, sqrt(2)/2))")
{
Tuple n = s.normal_at(Tuple::Point(0, sqrt(2) / 2, -sqrt(2) / 2));
THEN("n = vector(0,97014, -0.24254)")
@@ -179,10 +179,10 @@ SCENARIO("Reflecting a vector approaching at 45°", "[features/tuples.feature]")
AND_GIVEN("n <-vector(0, 1, 0)")
{
Tuple n = Tuple::Vector(0, 1, 0);
WHEN("r <- reflect(v,n)")
WHEN("r <- reflect(v, n)")
{
Tuple r = v.reflect(n);
THEN("r = vector(1,1,0)")
THEN("r = vector(1, 1, 0)")
{
REQUIRE(r == Tuple::Vector(1, 1, 0));
}
@@ -201,10 +201,10 @@ SCENARIO("Reflecting a vector off a slanted surface", "[features/tuples.feature]
AND_GIVEN("n <-vector(sqrt(2)/2, sqrt(2)/2, 0)")
{
Tuple n = Tuple::Vector(sqrt(2) / 2, sqrt(2) / 2, 0);
WHEN("r <- reflect(v,n)")
WHEN("r <- reflect(v, n)")
{
Tuple r = v.reflect(n);
THEN("r = vector(1,0,0)")
THEN("r = vector(1, 0, 0)")
{
REQUIRE(r == Tuple::Vector(1, 0, 0));
}
@@ -246,7 +246,7 @@ SCENARIO("The default material", "[features/materials.feature]")
GIVEN("m <- material()")
{
Material m;
THEN("m.color = color(1,1,1)")
THEN("m.color = color(1, 1, 1)")
{
REQUIRE(m.color() == Color(1, 1, 1));
}
@@ -312,3 +312,148 @@ SCENARIO("A sphere may be assigned a material", "[features/spheres.feature]")
}
}
}
/* ------------------------------------------------------------------------- */
SCENARIO("Lighting with the eye between the light and the surface", "[features/materials.feature]")
{
Tuple position = Tuple::Point(0, 0, 0);
Material m;
GIVEN("eyev <- vector(0, 0, -1)")
{
Tuple eyev = Tuple::Vector(0, 0, -1);
AND_GIVEN("normalv <- vector(0, 0, -1)")
{
Tuple normalv = Tuple::Vector(0, 0, -1);
AND_GIVEN("light <- point_light(point(0, 0, -10),color(1, 1, 1))")
{
PointLight light = PointLight(Tuple::Point(0, 0, -10), Color(1, 1, 1));
WHEN("result <- lighting(m, light, position, eyev, normalv)")
{
Color result = m.lighting(light, position, eyev, normalv);
THEN("result = color(1.9, 1.9, 1.9)")
{
REQUIRE(result == Color(1.9, 1.9, 1.9));
}
}
}
}
}
}
/* ------------------------------------------------------------------------- */
SCENARIO("Lighting with eye between the light & surface, eye offset 45°", "[features/materials.feature]")
{
Tuple position = Tuple::Point(0, 0, 0);
Material m;
GIVEN("eyev <- vector(0, sqrt(2)/2, -sqrt(2)/2)")
{
Tuple eyev = Tuple::Vector(0, sqrt(2) / 2, -sqrt(2) / 2);
AND_GIVEN("normalv <- vector(0, 0, -1)")
{
Tuple normalv = Tuple::Vector(0, 0, -1);
AND_GIVEN("light <- point_light(point(0, 0, -10),color(1, 1, 1))")
{
PointLight light = PointLight(Tuple::Point(0, 0, -10), Color(1, 1, 1));
WHEN("result <- lighting(m, light, position, eyev, normalv)")
{
Color result = m.lighting(light, position, eyev, normalv);
THEN("result = color(1.0, 1.0, 1.0)")
{
REQUIRE(result == Color(1.0, 1.0, 1.0));
}
}
}
}
}
}
/* ------------------------------------------------------------------------- */
SCENARIO("Lighting with the eye opposite surface, light offset 45°", "[features/materials.feature]")
{
Tuple position = Tuple::Point(0, 0, 0);
Material m;
GIVEN("eyev <- vector(0, 0, -1")
{
Tuple eyev = Tuple::Vector(0, 0, -1);
AND_GIVEN("normalv <- vector(0, 0, -1)")
{
Tuple normalv = Tuple::Vector(0, 0, -1);
AND_GIVEN("light <- point_light(point(0, 10, -10),color(1, 1, 1))")
{
PointLight light = PointLight(Tuple::Point(0, 10, -10), Color(1, 1, 1));
WHEN("result <- lighting(m, light, position, eyev, normalv)")
{
Color result = m.lighting(light, position, eyev, normalv);
THEN("result = color(0.7364, 0.7364, 0.7364)")
{
REQUIRE(result == Color(0.7364, 0.7364, 0.7364));
}
}
}
}
}
}
/* ------------------------------------------------------------------------- */
SCENARIO("Lighting with the eye in the path of the reflection vector", "[features/materials.feature]")
{
Tuple position = Tuple::Point(0, 0, 0);
Material m;
GIVEN("eyev <- vector(0, -sqrt(2)/2, -sqrt(2)/2")
{
Tuple eyev = Tuple::Vector(0, -sqrt(2) / 2, -sqrt(2) / 2);
AND_GIVEN("normalv <- vector(0, 0, -1)")
{
Tuple normalv = Tuple::Vector(0, 0, -1);
AND_GIVEN("light <- point_light(point(0, 10, -10),color(1, 1, 1))")
{
PointLight light = PointLight(Tuple::Point(0, 10, -10), Color(1, 1, 1));
WHEN("result <- lighting(m, light, position, eyev, normalv)")
{
Color result = m.lighting(light, position, eyev, normalv);
THEN("result = color(1.6364, 1.6364, 1.6364)")
{
REQUIRE(result == Color(1.6364, 1.6364, 1.6364));
}
}
}
}
}
}
/* ------------------------------------------------------------------------- */
SCENARIO("Lighting with the light behind the surface", "[features/materials.feature]")
{
Tuple position = Tuple::Point(0, 0, 0);
Material m;
GIVEN("eyev <- vector(0, 0, -1")
{
Tuple eyev = Tuple::Vector(0, 0, -1);
AND_GIVEN("normalv <- vector(0, 0, -1)")
{
Tuple normalv = Tuple::Vector(0, 0, -1);
AND_GIVEN("light <- point_light(point(0, 0, 10),color(1, 1, 1))")
{
PointLight light = PointLight(Tuple::Point(0, 0, 10), Color(1, 1, 1));
WHEN("result <- lighting(m, light, position, eyev, normalv)")
{
Color result = m.lighting(light, position, eyev, normalv);
THEN("result = color(0.1, 0.1, 0.1)")
{
REQUIRE(result == Color(0.1, 0.1, 0.1));
}
}
}
}
}
}