[WIP] tests transform it into BDD Style

This commit is contained in:
NADAL Jean-Baptiste
2024-02-13 18:41:42 +01:00
parent c3d3a85f08
commit bac26441c5
6 changed files with 1635 additions and 731 deletions

View File

@@ -33,204 +33,408 @@ using namespace Raytracer;
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] Multiplying by a translation matrix", "[Matrix]")
SCENARIO("Multiplying by a translation matrix", "[features/transformations.feature]")
{
Matrix transform = Matrix::translation(5, -3, 2);
Tuple p = Tuple::Point(-3, 4, 5);
REQUIRE(transform * p == Tuple::Point(2, 1, 7));
GIVEN("transform <- translation(5, -3, 2)")
{
Matrix transform = Matrix::translation(5, -3, 2);
AND_GIVEN("p <- point(-3, 4, 5)")
{
Tuple p = Tuple::Point(-3, 4, 5);
THEN("transform * p = point(2, 1, 7)")
{
REQUIRE(transform * p == Tuple::Point(2, 1, 7));
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] Multiplying by the inverse of a translation matrix", "[Matrix]")
SCENARIO("Multiplying by the inverse of a translation matrix", "[features/transformations.feature]")
{
Matrix transform = Matrix::translation(5, -3, 2);
Matrix inv = transform.inverse();
Tuple p = Tuple::Point(-3, 4, 5);
REQUIRE(inv * p == Tuple::Point(-8, 7, 3));
GIVEN("transform <- translation(5, -3, 2)")
{
Matrix transform = Matrix::translation(5, -3, 2);
AND_GIVEN("inv <- inverse(transform)")
{
Matrix inv = transform.inverse();
AND_GIVEN("p <- point(-3, 4, 5)")
{
Tuple p = Tuple::Point(-3, 4, 5);
THEN("inv * p = point(-8, 7, 3)")
{
REQUIRE(inv * p == Tuple::Point(-8, 7, 3));
}
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] Translation does not affect vectors", "[Matrix]")
SCENARIO("Translation does not affect vectors", "[features/transformations.feature]")
{
Matrix transform = Matrix::translation(5, -3, 2);
Tuple v = Tuple::Vector(-3, 4, 5);
REQUIRE(transform * v == v);
GIVEN("transform <- translation(5, -3, 2)")
{
Matrix transform = Matrix::translation(5, -3, 2);
AND_GIVEN("v <- vector(-3, 4, 5)")
{
Tuple v = Tuple::Vector(-3, 4, 5);
THEN("transform * v = v")
{
REQUIRE(transform * v == v);
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] A scaling matrix applied to a point", "[Matrix]")
SCENARIO("A scaling matrix applied to a point", "[features/transformations.feature]")
{
Matrix transform = Matrix::scaling(2, 3, 4);
Tuple p = Tuple::Point(-4, 6, 8);
REQUIRE(transform * p == Tuple::Point(-8, 18, 32));
GIVEN("transform <- scaling(2, 3, 4)")
{
Matrix transform = Matrix::scaling(2, 3, 4);
AND_GIVEN("p <- point(-4, 6, 8)")
{
Tuple p = Tuple::Point(-4, 6, 8);
THEN("transform * p = point(-8, 18, 32)")
{
REQUIRE(transform * p == Tuple::Point(-8, 18, 32));
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] A scaling matrix applied to a vector", "[Matrix]")
SCENARIO("A scaling matrix applied to a vector", "[features/transformations.feature]")
{
Matrix transform = Matrix::scaling(2, 3, 4);
Tuple v = Tuple::Vector(-4, 6, 8);
REQUIRE(transform * v == Tuple::Vector(-8, 18, 32));
GIVEN("transform <- scaling(2, 3, 4)")
{
Matrix transform = Matrix::scaling(2, 3, 4);
AND_GIVEN("v <- vector(-4, 6, 8)")
{
Tuple v = Tuple::Vector(-4, 6, 8);
THEN("transform * p = vector(-8, 18, 32)")
{
REQUIRE(transform * v == Tuple::Vector(-8, 18, 32));
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] Multiplying by the inverse of a scaling matrix", "[Matrix]")
SCENARIO("Multiplying by the inverse of a scaling matrix", "[features/transformations.feature]")
{
Matrix transform = Matrix::scaling(2, 3, 4);
Matrix inv = transform.inverse();
Tuple v = Tuple::Vector(-4, 6, 8);
REQUIRE(inv * v == Tuple::Vector(-2, 2, 2));
GIVEN("transform <- scaling(2, 3, 4)")
{
Matrix transform = Matrix::scaling(2, 3, 4);
AND_GIVEN("inv <- inverse(transform)")
{
Matrix inv = transform.inverse();
AND_GIVEN("v <- vector(-4, 6, 8)")
{
Tuple v = Tuple::Vector(-4, 6, 8);
THEN("inv * v = vector(-2, 2, 2)")
{
REQUIRE(inv * v == Tuple::Vector(-2, 2, 2));
}
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] Reflection is scaling by a negative value", "[Matrix]")
SCENARIO("Reflection is scaling by a negative value", "[features/transformations.feature]")
{
Matrix transform = Matrix::scaling(-1, 1, 1);
Tuple p = Tuple::Point(2, 3, 4);
REQUIRE(transform * p == Tuple::Point(-2, 3, 4));
GIVEN("transform <- scaling(-1, 1, 1)")
{
Matrix transform = Matrix::scaling(-1, 1, 1);
AND_GIVEN("p <- point(2, 3, 4)")
{
Tuple p = Tuple::Point(2, 3, 4);
THEN("transform * p = point(-2, 3, 4)")
{
REQUIRE(transform * p == Tuple::Point(-2, 3, 4));
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] Rotating a point around the x axis", "[Matrix]")
SCENARIO("Rotating a point around the x axis", "[features/transformations.feature]")
{
Tuple p = Tuple::Point(0, 1, 0);
Matrix half_quarter = Matrix::rotation_x(std::numbers::pi / 4);
Matrix full_quarter = Matrix::rotation_x(std::numbers::pi / 2);
REQUIRE(half_quarter * p == Tuple::Point(0, sqrt(2) / 2, sqrt(2) / 2));
REQUIRE(full_quarter * p == Tuple::Point(0, 0, 1));
GIVEN("p <- point(0, 1, 0)")
{
Tuple p = Tuple::Point(0, 1, 0);
AND_GIVEN("half_quarter <- rotation_x(pi/4)")
{
Matrix half_quarter = Matrix::rotation_x(std::numbers::pi / 4);
AND_GIVEN("full_quarter <- rotation_x(pi/2)")
{
Matrix full_quarter = Matrix::rotation_x(std::numbers::pi / 2);
THEN("half_quarter * p = point(0, sqrt(2) / 2, sqrt(2) / 2)")
{
REQUIRE(half_quarter * p == Tuple::Point(0, sqrt(2) / 2, sqrt(2) / 2));
}
AND_THEN("full_quarter * p == point(0, 0, 1)")
{
REQUIRE(full_quarter * p == Tuple::Point(0, 0, 1));
}
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] The inverse of an x-rotation rotates in the opposite direction", "[Matrix]")
SCENARIO("The inverse of an x-rotation rotates in the opposite direction", "[features/transformations.feature]")
{
Tuple p = Tuple::Point(0, 1, 0);
Matrix half_quarter = Matrix::rotation_x(std::numbers::pi / 4);
Matrix inv = half_quarter.inverse();
REQUIRE(inv * p == Tuple::Point(0, sqrt(2) / 2, -sqrt(2) / 2));
GIVEN("p <- point(0, 1, 0)")
{
Tuple p = Tuple::Point(0, 1, 0);
AND_GIVEN("half_quarter <- rotation_x(pi/4)")
{
Matrix half_quarter = Matrix::rotation_x(std::numbers::pi / 4);
AND_GIVEN("inv <- inverse(half_quarter)")
{
Matrix inv = half_quarter.inverse();
THEN("inv * p = point(0, sqrt(2) / 2, -sqrt(2) / 2)")
{
REQUIRE(inv * p == Tuple::Point(0, sqrt(2) / 2, -sqrt(2) / 2));
}
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] Rotating a point around the y axis", "[Matrix]")
SCENARIO("Rotating a point around the y axis", "[features/transformations.feature]")
{
Tuple p = Tuple::Point(0, 0, 1);
Matrix half_quarter = Matrix::rotation_y(std::numbers::pi / 4);
Matrix full_quarter = Matrix::rotation_y(std::numbers::pi / 2);
REQUIRE(half_quarter * p == Tuple::Point(sqrt(2) / 2, 0, sqrt(2) / 2));
REQUIRE(full_quarter * p == Tuple::Point(1, 0, 0));
GIVEN("p <- point(0, 1, 0)")
{
Tuple p = Tuple::Point(0, 0, 1);
AND_GIVEN("half_quarter <- rotation_y(pi/4)")
{
Matrix half_quarter = Matrix::rotation_y(std::numbers::pi / 4);
AND_GIVEN("full_quarter <- rotation_y(pi/2)")
{
Matrix full_quarter = Matrix::rotation_y(std::numbers::pi / 2);
THEN("half_quarter * p = point(sqrt(2) / 2, 0, sqrt(2) / 2)")
{
REQUIRE(half_quarter * p == Tuple::Point(sqrt(2) / 2, 0, sqrt(2) / 2));
}
AND_THEN("full_quarter * p = point(1, 0, 0)")
{
REQUIRE(full_quarter * p == Tuple::Point(1, 0, 0));
}
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] Rotating a point around the z axis", "[Matrix]")
SCENARIO("Rotating a point around the z axis", "[features/transformations.feature]")
{
Tuple p = Tuple::Point(0, 1, 0);
Matrix half_quarter = Matrix::rotation_z(std::numbers::pi / 4);
Matrix full_quarter = Matrix::rotation_z(std::numbers::pi / 2);
GIVEN("p <- point(0, 1, 0)")
{
Tuple p = Tuple::Point(0, 1, 0);
AND_GIVEN("full_quarter <- rotation_z(pi/4)")
{
Matrix half_quarter = Matrix::rotation_z(std::numbers::pi / 4);
AND_GIVEN("full_quarter <- rotation_z(pi/2)")
{
Matrix full_quarter = Matrix::rotation_z(std::numbers::pi / 2);
Tuple z = half_quarter * p;
REQUIRE(half_quarter * p == Tuple::Point(-sqrt(2) / 2, sqrt(2) / 2, 0));
REQUIRE(full_quarter * p == Tuple::Point(-1, 0, 0));
Tuple z = half_quarter * p;
THEN("half_quarter * p = point(-sqrt(2) / 2, sqrt(2) / 2, 0)")
{
REQUIRE(half_quarter * p == Tuple::Point(-sqrt(2) / 2, sqrt(2) / 2, 0));
}
AND_THEN("full_quarter * p = point(-1, 0, 0)")
{
REQUIRE(full_quarter * p == Tuple::Point(-1, 0, 0));
}
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] A shearing transformation moves x in proportion to y", "[Matrix]")
SCENARIO("A shearing transformation moves x in proportion to y", "[features/transformations.feature]")
{
Matrix transform = Matrix::shearing(1, 0, 0, 0, 0, 0);
Tuple p = Tuple::Point(2, 3, 4);
REQUIRE(transform * p == Tuple::Point(5, 3, 4));
GIVEN("transform <- shearing(1, 0, 0, 0, 0, 0)")
{
Matrix transform = Matrix::shearing(1, 0, 0, 0, 0, 0);
AND_GIVEN("p <- point(2, 3, 4)")
{
Tuple p = Tuple::Point(2, 3, 4);
THEN("transform * p == point(5, 3, 4)")
{
REQUIRE(transform * p == Tuple::Point(5, 3, 4));
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] A shearing transformation moves y in proportion to x", "[Matrix]")
SCENARIO("A shearing transformation moves y in proportion to x", "[features/transformations.feature]")
{
Matrix transform = Matrix::shearing(0, 0, 1, 0, 0, 0);
Tuple p = Tuple::Point(2, 3, 4);
REQUIRE(transform * p == Tuple::Point(2, 5, 4));
GIVEN("transform <- shearing(0, 0, 1, 0, 0, 0)")
{
Matrix transform = Matrix::shearing(0, 0, 1, 0, 0, 0);
AND_GIVEN("p <- point(2, 3, 4)")
{
Tuple p = Tuple::Point(2, 3, 4);
THEN("transform * p == point(2, 5, 4)")
{
REQUIRE(transform * p == Tuple::Point(2, 5, 4));
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] A shearing transformation moves y in proportion to z", "[Matrix]")
SCENARIO("A shearing transformation moves y in proportion to z", "[features/transformations.feature]")
{
Matrix transform = Matrix::shearing(0, 0, 0, 1, 0, 0);
Tuple p = Tuple::Point(2, 3, 4);
REQUIRE(transform * p == Tuple::Point(2, 7, 4));
GIVEN("transform <- shearing(0, 0, 0, 1, 0, 0)")
{
Matrix transform = Matrix::shearing(0, 0, 0, 1, 0, 0);
AND_GIVEN("p <- point(2, 3, 4)")
{
Tuple p = Tuple::Point(2, 3, 4);
THEN("transform * p == point(2, 7, 4)")
{
REQUIRE(transform * p == Tuple::Point(2, 7, 4));
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] A shearing transformation moves z in proportion to x", "[Matrix]")
SCENARIO("A shearing transformation moves z in proportion to x", "[features/transformations.feature]")
{
Matrix transform = Matrix::shearing(0, 0, 0, 0, 1, 0);
Tuple p = Tuple::Point(2, 3, 4);
REQUIRE(transform * p == Tuple::Point(2, 3, 6));
GIVEN("transform <- shearing(0, 0, 0, 0, 1, 0)")
{
Matrix transform = Matrix::shearing(0, 0, 0, 0, 1, 0);
AND_GIVEN("p <- point(2, 3, 4)")
{
Tuple p = Tuple::Point(2, 3, 4);
THEN("transform * p == point(2, 3, 6)")
{
REQUIRE(transform * p == Tuple::Point(2, 3, 6));
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] A shearing transformation moves z in proportion to y", "[Matrix]")
SCENARIO("A shearing transformation moves z in proportion to y", "[features/transformations.feature]")
{
Matrix transform = Matrix::shearing(0, 0, 0, 0, 0, 1);
Tuple p = Tuple::Point(2, 3, 4);
REQUIRE(transform * p == Tuple::Point(2, 3, 7));
GIVEN("transform <- shearing(0, 0, 0, 0, 0, 1)")
{
Matrix transform = Matrix::shearing(0, 0, 0, 0, 0, 1);
AND_GIVEN("p <- point(2, 3, 4)")
{
Tuple p = Tuple::Point(2, 3, 4);
THEN("transform * p == point(2, 3, 7)")
{
REQUIRE(transform * p == Tuple::Point(2, 3, 7));
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] Individual transformations are applied in sequence", "[Matrix]")
SCENARIO("Individual transformations are applied in sequence", "[features/transformations.feature]")
{
Tuple p = Tuple::Point(1, 0, 1);
Matrix a = Matrix::rotation_x(std::numbers::pi / 2);
Matrix b = Matrix::scaling(5, 5, 5);
Matrix c = Matrix::translation(10, 5, 7);
GIVEN("p <- point(1, 0, 1)")
{
Tuple p = Tuple::Point(1, 0, 1);
AND_GIVEN("A <- rotation_x(pi/2)")
{
Matrix A = Matrix::rotation_x(std::numbers::pi / 2);
AND_GIVEN("B <- scaling(5, 5, 5)")
{
Matrix B = Matrix::scaling(5, 5, 5);
AND_GIVEN("C <- translation(10, 5, 7))")
{
Matrix C = Matrix::translation(10, 5, 7);
// Appply rotation first.
Tuple p2 = a * p;
REQUIRE(p2 == Tuple::Point(1, -1, 0));
// Then Apply scaling
Tuple p3 = b * p2;
REQUIRE(p3 == Tuple::Point(5, -5, 0));
// Then Apply translation
Tuple p4 = c * p3;
REQUIRE(p4 == Tuple::Point(15, 0, 7));
// Apply rotation first.
WHEN("p2 <- A * p")
{
Tuple p2 = A * p;
THEN("p2 = point(1, -1, 0)")
{
REQUIRE(p2 == Tuple::Point(1, -1, 0));
}
// Then Apply scaling
WHEN("p3 <- B * p2")
{
Tuple p3 = B * p2;
THEN("p3 = point(5, -5, 0)")
{
REQUIRE(p3 == Tuple::Point(5, -5, 0));
}
// Then Apply translation
WHEN("p4 = C * p3")
{
Tuple p4 = C * p3;
THEN("p4 = point(15, 0, 7)")
{
REQUIRE(p4 == Tuple::Point(15, 0, 7));
}
}
}
}
}
}
}
}
}
/* ------------------------------------------------------------------------- */
TEST_CASE("[04][Trans] Chained transformation must be applied in rever order", "[Matrix]")
SCENARIO("Chained transformation must be applied in revert order", "[features/transformations.feature]")
{
Tuple p = Tuple::Point(1, 0, 1);
Matrix a = Matrix::rotation_x(std::numbers::pi / 2);
Matrix b = Matrix::scaling(5, 5, 5);
Matrix c = Matrix::translation(10, 5, 7);
Matrix t = c * b * a;
REQUIRE(t * p == Tuple::Point(15, 0, 7));
GIVEN("p <- point(1, 0, 1)")
{
Tuple p = Tuple::Point(1, 0, 1);
AND_GIVEN("A <- rotation_x(pi/2)")
{
Matrix A = Matrix::rotation_x(std::numbers::pi / 2);
AND_GIVEN("B <- scaling(5, 5, 5)")
{
Matrix B = Matrix::scaling(5, 5, 5);
AND_GIVEN("C <- translation(10, 5, 7))")
{
Matrix C = Matrix::translation(10, 5, 7);
WHEN("t <- C * B * A")
{
Matrix T = C * B * A;
THEN("T * p == point(15, 0, 7)")
{
REQUIRE(T * p == Tuple::Point(15, 0, 7));
}
}
}
}
}
}
}