/*! * 11_reflection_refraction.cpp * * Copyright (c) 2015-2024, NADAL Jean-Baptiste. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA * * @Author: NADAL Jean-Baptiste * @Date: 05/03/2024 * */ /*---------------------------------------------------------------------------*/ #include #include "raytracing.h" using namespace Raytracer; /* ------------------------------------------------------------------------- */ SCENARIO("Reflectivity for the default material", "[features/materials.feature]") { GIVEN("m <- material()") { Material m; THEN("m.reflective = 0.0") { REQUIRE(m.reflective() == 0); } } } /* ------------------------------------------------------------------------- */ SCENARIO("Precomputing the reflection vector", "[features/intersections.feature]") { GIVEN("shape <- plane()") { Plane shape; AND_GIVEN("r <- ray(point(0, 1, -1), vector(0, -sqrt(2)/2, sqrt(2)/2))") { Ray r(Tuple::Point(0, 1, -1), Tuple::Vector(0, -sqrt(2) / 2, sqrt(2) / 2)); AND_GIVEN("i <- intersection(sqrt(2), shape)") { Intersection i(sqrt(2), &shape); WHEN("comps <- prepare_computation(i, r)") { IntersectionData comps = i.prepare_computations(r); THEN("comps.reflectv = vector(0, sqrt(2) / 2, sqrt(2) / 2)") { REQUIRE(comps.reflectv() == Tuple::Vector(0, sqrt(2) / 2, sqrt(2) / 2)); } } } } } } /* ------------------------------------------------------------------------- */ SCENARIO("The reflected color for a non reflective material", "[features/world.feature]") { GIVEN("w <- default_world()") { World w = World::default_world(); AND_GIVEN("ray(point(0, 0, 0), vector(0, 0, 1)") { Ray r(Tuple::Point(0, 0, 0), Tuple::Vector(0, 0, 1)); AND_GIVEN("shape <-the second object in w") { Shape *shape = w.objects(1); AND_GIVEN("shape.material.ambient <- 1") { shape->material().set_ambient(1); AND_GIVEN("i <- intersection(1, shape)") { Intersection i(1, shape); WHEN("comps <- prepare_computation(i, r)") { IntersectionData comps = i.prepare_computations(r); AND_WHEN("color <- reflected_color(w, comps)") { Color color = w.reflected_color(comps); THEN("color = color(0, 0, 0)") { REQUIRE(color == Color(0, 0, 0)); } } } } } } } } } /* ------------------------------------------------------------------------- */ SCENARIO("The reflected color for a reflective material", "[features/world.feature]") { GIVEN("w <- default_world()") { World w = World::default_world(); AND_GIVEN("shape <- plane() with:") // | material.reflective | 0.5 | // | transform | translation(0, -1, 0) | { Plane shape; shape.material().set_reflective(0.5); shape.set_transform(Matrix::translation(0, -1, 0)); AND_GIVEN("shape is added to w") { w.add_object(&shape); AND_GIVEN("ray(point(0, 0, -3), vector(0, -sqrt(2) / 2, sqrt(2) / 2)") { Ray r(Tuple::Point(0, 0, -3), Tuple::Vector(0, -sqrt(2) / 2, sqrt(2) / 2)); AND_GIVEN("i <- intersection(sqrt(2), shape)") { Intersection i(sqrt(2), &shape); WHEN("comps <- prepare_computation(i, r)") { IntersectionData comps = i.prepare_computations(r); AND_WHEN("color <- reflected_color(w, comps)") { Color color = w.reflected_color(comps); THEN("color = color(0.19032, 0.2379, 0.14274)") { REQUIRE(color == Color(0.19032, 0.2379, 0.14274)); } } } } } } } } } /* ------------------------------------------------------------------------- */ SCENARIO("shade_it() with a reflective material", "[features/world.feature]") { GIVEN("w <- default_world()") { World w = World::default_world(); AND_GIVEN("shape <- plane() with:") // | material.reflective | 0.5 | // | transform | translation(0, -1, 0) | { Plane shape; shape.material().set_reflective(0.5); shape.set_transform(Matrix::translation(0, -1, 0)); AND_GIVEN("shape is added to w") { w.add_object(&shape); AND_GIVEN("ray(point(0, 0, -3), vector(0, -sqrt(2) / 2, sqrt(2) / 2)") { Ray r(Tuple::Point(0, 0, -3), Tuple::Vector(0, -sqrt(2) / 2, sqrt(2) / 2)); AND_GIVEN("i <- intersection(sqrt(2), shape)") { Intersection i(sqrt(2), &shape); WHEN("comps <- prepare_computation(i, r)") { IntersectionData comps = i.prepare_computations(r); AND_WHEN("color <- shade_hit(w, comps)") { Color color = w.shade_hit(comps); THEN("color = color(0.87677, 0.92436, 0.82918)") { REQUIRE(color == Color(0.87677, 0.92436, 0.82918)); } } } } } } } } } /* ------------------------------------------------------------------------- */ SCENARIO("color_at() with mutually reflective surfaces", "[features/world.feature]") { GIVEN("w <- default_world()") { World w = World::default_world(); AND_GIVEN("w.light <- point_light(point(0, 0, 0), color(1, 1, 1))") { w.set_light(PointLight(Tuple::Point(0, 0, 0), Color(1, 1, 1))); AND_GIVEN("lower <- plane() with:") // | material.reflective | 1 | // | transform | translation(0, -1, 0) | { Plane lower; lower.material().set_reflective(1); lower.set_transform(Matrix::translation(0, -1, 0)); AND_GIVEN("lower is added to w") { w.add_object(&lower); AND_GIVEN("upper <- plane() with:") // | material.reflective | 1 | // | transform | translation(0, 1, 0) | { Plane upper; upper.material().set_reflective(1); upper.set_transform(Matrix::translation(0, 1, 0)); AND_GIVEN("upper is added to w") { w.add_object(&upper); AND_GIVEN("ray(point(0, 0, 0), vector(0, 1, 0)") { Ray r(Tuple::Point(0, 0, 0), Tuple::Vector(0, 1, 0)); THEN("color_at(w, r) terminate successfully") { w.color_at(r); } } } } } } } } } /* ------------------------------------------------------------------------- */ SCENARIO("The reflected color at the maximum recursive depth", "[features/world.feature]") { GIVEN("w <- default_world()") { World w = World::default_world(); AND_GIVEN("shape <- plane() with:") // | material.reflective | 0.5 | // | transform | translation(0, -1, 0) | { Plane shape; shape.material().set_reflective(0.5); shape.set_transform(Matrix::translation(0, -1, 0)); AND_GIVEN("shape is added to w") { w.add_object(&shape); AND_GIVEN("r <- ray(point(0, 0, -3), vector(0, -sqrt(2) / 2, sqrt(2) / 2)") { Ray r(Tuple::Point(0, 0, -3), Tuple::Vector(0, -sqrt(2) / 2, sqrt(2) / 2)); AND_GIVEN("i <- intersection(sqrt(2), shape)") { Intersection i(sqrt(2), &shape); WHEN("comps <- prepare_computation(i, r)") { IntersectionData comps = i.prepare_computations(r); AND_WHEN("color <- reflected_color(w, comps, 0)") { Color color = w.reflected_color(comps, 0); THEN("color = color(0.19032, 0.2379, 0.14274)") { REQUIRE(color == Color(0, 0, 0)); } } } } } } } } } /* ------------------------------------------------------------------------- */ SCENARIO("Transparency and Refractive Index for the default material", "[features/materials.feature]") { GIVEN("m <- material()") { Material m; THEN("m.transparency = 0.0") { REQUIRE(m.transparency() == 0.0); } AND_THEN("m.refractive_index = 1.0") { REQUIRE(m.refractive_index() == 1.0); } } } /* ------------------------------------------------------------------------- */ SCENARIO("A helper for producing a sphere with a glassy material", "[features/spheres.feature]") { GIVEN("s <- glass_sphere()") { Sphere s = Sphere::Glass(); THEN("s.transform = identity_matrix") { REQUIRE(s.transform() == Matrix::identity()); } AND_THEN("s.material.transparency = 1.0") { REQUIRE(s.material().transparency() == 1.0); } AND_THEN("s.material.refractive_index = 1.5") { REQUIRE(s.material().refractive_index() == 1.5); } } } /* ------------------------------------------------------------------------- */ struct TestData { Intersection i; double n1; double n2; }; void fill_test_various(TestData *a_test, const Intersection &an_in, double a_n1, double a_n2) { a_test->i = an_in; a_test->n1 = a_n1; a_test->n2 = a_n2; } /* ------------------------------------------------------------------------- */ SCENARIO("Finding n1 and n2 at various intersections", "[features/intersections.feature]") { TestData the_tests[6]; GIVEN("A <- glass_sphere() with:") // | transform | scaling(2, 2, 2) | // | material.refractive_index | 1.5 | { Sphere A = Sphere::Glass(); A.set_transform(Matrix::scaling(2, 2, 2)); A.material().set_refractive_index(1.5); GIVEN("B <- glass_sphere() with:") // | transform | translation(0, 0, -0.25) | // | material.refractive_index | 2.0 | { Sphere B = Sphere::Glass(); B.set_transform(Matrix::translation(0, 0, -0.25)); B.material().set_refractive_index(2.0); GIVEN("C <- glass_sphere() with:") // | transform | translation(0, 0, 0.25) | // | material.refractive_index | 2.5 | { Sphere C = Sphere::Glass(); C.set_transform(Matrix::translation(0, 0, 0.25)); C.material().set_refractive_index(2.5); AND_GIVEN("r <- ray(point(0, 0, -4), vector(0, 0, 1)") { Ray r(Tuple::Point(0, 0, -4), Tuple::Vector(0, 0, 1)); AND_GIVEN("xs <- intersections(2:A, 2.75:B, 3.25:C, 4.75:B, 5.25:C, 6:A)") { // Examples: // | index | n1 | n2 | // | 0 |1.0 |1.5 | // | 1 |1.5 |2.0 | // | 2 |2.0 |2.5 | // | 3 |2.5 |2.5 | // | 4 |2.5 |1.5 | // | 5 |1.5 |1.0 | fill_test_various(&the_tests[0], Intersection(2.0, &A), 1.0, 1.5); fill_test_various(&the_tests[1], Intersection(2.75, &B), 1.5, 2.0); fill_test_various(&the_tests[2], Intersection(3.25, &C), 2.0, 2.5); fill_test_various(&the_tests[3], Intersection(4.75, &B), 2.5, 2.5); fill_test_various(&the_tests[4], Intersection(5.25, &C), 2.5, 1.5); fill_test_various(&the_tests[5], Intersection(6.0, &A), 1.5, 1.0); Intersections xs = Intersections({the_tests[0].i, the_tests[1].i, the_tests[2].i, the_tests[3].i, the_tests[4].i, the_tests[5].i}); for (int i = 0; i < 6; i++) { WHEN("comps <- prepare_computations(xs[index], r, xs)") { IntersectionData comps = the_tests[i].i.prepare_computations(r, &xs); THEN("comps.n1 = ") { REQUIRE(comps.n1() == the_tests[i].n1); } AND_THEN("comps.n2 = ") { REQUIRE(comps.n2() == the_tests[i].n2); } } } } } } } } }