464 lines
11 KiB
C++
464 lines
11 KiB
C++
/*!
|
|
* 03_matrix.cpp
|
|
*
|
|
* Copyright (c) 2015-2024, NADAL Jean-Baptiste. All rights reserved.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301 USA
|
|
*
|
|
* @Author: NADAL Jean-Baptiste
|
|
* @Date: 01/02/2024
|
|
*
|
|
*/
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
#include <catch.hpp>
|
|
|
|
#include "raytracing.h"
|
|
|
|
using namespace Raytracer;
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Constructing and inspecting a 4x4 matrix", "[Matrix]")
|
|
{
|
|
Matrix m = {
|
|
{ 1, 2, 3, 4},
|
|
{ 5.5, 6.5, 7.5, 8.5},
|
|
{ 9, 10, 11, 12},
|
|
{13.5, 14.5, 15.5, 16.5}
|
|
};
|
|
|
|
REQUIRE(m.rows() == 4);
|
|
REQUIRE(m.cols() == 4);
|
|
|
|
REQUIRE(m[0][0] == 1);
|
|
REQUIRE(m[0][3] == 4);
|
|
REQUIRE(m[1][0] == 5.5);
|
|
REQUIRE(m[1][2] == 7.5);
|
|
REQUIRE(m[2][2] == 11);
|
|
REQUIRE(m[3][0] == 13.5);
|
|
REQUIRE(m[3][2] == 15.5);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] A 2x2 matrix ought to be representable", "[Matrix]")
|
|
{
|
|
Matrix m = {
|
|
{-3, 5},
|
|
{ 1, -2}
|
|
};
|
|
|
|
REQUIRE(m.rows() == 2);
|
|
REQUIRE(m.cols() == 2);
|
|
|
|
REQUIRE(m[0][0] == -3);
|
|
REQUIRE(m[0][1] == 5);
|
|
REQUIRE(m[1][0] == 1);
|
|
REQUIRE(m[1][1] == -2);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] A 3x3 matrix ought to be representable", "[Matrix]")
|
|
{
|
|
Matrix m = {
|
|
{-3, 5, 0},
|
|
{ 1, -2, -7},
|
|
{ 0, 1, 1}
|
|
};
|
|
|
|
REQUIRE(m.rows() == 3);
|
|
REQUIRE(m.cols() == 3);
|
|
|
|
REQUIRE(m[0][0] == -3);
|
|
REQUIRE(m[1][1] == -2);
|
|
REQUIRE(m[2][2] == 1);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Matrix equality with identical matrices", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{1, 2, 3, 4},
|
|
{5, 6, 7, 8},
|
|
{9, 8, 7, 6},
|
|
{5, 4, 3, 2}
|
|
};
|
|
Matrix b = {
|
|
{1, 2, 3, 4},
|
|
{5, 6, 7, 8},
|
|
{9, 8, 7, 6},
|
|
{5, 4, 3, 2}
|
|
};
|
|
|
|
REQUIRE(a == b);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Matrix equality with different matrices", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{1, 2, 3, 4},
|
|
{5, 6, 7, 8},
|
|
{9, 8, 7, 6},
|
|
{5, 4, 3, 2}
|
|
};
|
|
Matrix b = {
|
|
{2, 3, 4, 5},
|
|
{6, 7, 8, 9},
|
|
{8, 7, 6, 5},
|
|
{4, 3, 2, 1}
|
|
};
|
|
|
|
REQUIRE(a != b);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Multiplying two matrices", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{1, 2, 3, 4},
|
|
{5, 6, 7, 8},
|
|
{9, 8, 7, 6},
|
|
{5, 4, 3, 2}
|
|
};
|
|
Matrix b = {
|
|
{-2, 1, 2, 3},
|
|
{ 3, 2, 1, -1},
|
|
{ 4, 3, 6, 5},
|
|
{ 1, 2, 7, 8}
|
|
};
|
|
Matrix c = {
|
|
{20, 22, 50, 48},
|
|
{44, 54, 114, 108},
|
|
{40, 58, 110, 102},
|
|
{16, 26, 46, 42}
|
|
};
|
|
|
|
REQUIRE((a * b) == c);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] a matrix multiplied by a tuple", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{1, 2, 3, 4},
|
|
{2, 4, 4, 2},
|
|
{8, 6, 4, 1},
|
|
{0, 0, 0, 1}
|
|
};
|
|
Tuple b(1, 2, 3, 1);
|
|
|
|
REQUIRE((a * b) == Tuple(18, 24, 33, 1));
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Multiplying a matrix by the identity matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{0, 1, 2, 4},
|
|
{1, 2, 4, 8},
|
|
{2, 4, 8, 16},
|
|
{4, 8, 16, 32}
|
|
};
|
|
|
|
REQUIRE((a * Matrix::identity()) == a);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Multiplying the identity matrix by a tuple", "[Matrix]")
|
|
{
|
|
Tuple a(1, 2, 3, 4);
|
|
|
|
REQUIRE((Matrix::identity() * a) == a);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Transposing a matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{0, 9, 3, 0},
|
|
{9, 8, 0, 8},
|
|
{1, 8, 5, 3},
|
|
{0, 0, 5, 8}
|
|
};
|
|
Matrix transposed = {
|
|
{0, 9, 1, 0},
|
|
{9, 8, 8, 0},
|
|
{3, 0, 5, 5},
|
|
{0, 8, 3, 8}
|
|
};
|
|
|
|
a.transpose();
|
|
|
|
REQUIRE(a == transposed);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Transposing the identity matrix", "[Matrix]")
|
|
{
|
|
Matrix a = Matrix::identity();
|
|
|
|
a.transpose();
|
|
|
|
REQUIRE(a == Matrix::identity());
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Calculating the determinant of a 2x2 matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{ 1, 5},
|
|
{-3, 2}
|
|
};
|
|
|
|
REQUIRE(a.determinant() == 17);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] A submatrix of a 3x3 matrix is a 2x2 matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{ 1, 5, 0},
|
|
{-3, 2, 7},
|
|
{ 0, 6, -3}
|
|
};
|
|
|
|
Matrix b = {
|
|
{-3, 2},
|
|
{ 0, 6}
|
|
};
|
|
|
|
REQUIRE(a.sub_matrix(0, 2) == b);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] A submatrix of a 4x4 matrix is a 3x3 matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{-6, 1, 1, 6},
|
|
{-8, 5, 8, 6},
|
|
{-1, 0, 8, 2},
|
|
{-7, 1, -1, 1}
|
|
};
|
|
|
|
Matrix b = {
|
|
{-6, 1, 6},
|
|
{-8, 8, 6},
|
|
{-7, -1, 1}
|
|
};
|
|
|
|
REQUIRE(a.sub_matrix(2, 1) == b);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Calculating a minor of a 3x3 matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{3, 5, 0},
|
|
{2, -1, -7},
|
|
{6, -1, 5}
|
|
};
|
|
|
|
Matrix b = a.sub_matrix(1, 0);
|
|
|
|
REQUIRE(b.determinant() == 25);
|
|
|
|
REQUIRE(a.minor(1, 0) == 25);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Calculating a cofactor of a 3x3 matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{3, 5, 0},
|
|
{2, -1, -7},
|
|
{6, -1, 5}
|
|
};
|
|
|
|
REQUIRE(a.minor(0, 0) == -12);
|
|
REQUIRE(a.cofactor(0, 0) == -12);
|
|
REQUIRE(a.minor(1, 0) == 25);
|
|
REQUIRE(a.cofactor(1, 0) == -25);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Calculating the determinant of a 3x3 matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{ 1, 2, 6},
|
|
{-5, 8, -4},
|
|
{ 2, 6, 4}
|
|
};
|
|
|
|
REQUIRE(a.cofactor(0, 0) == 56);
|
|
REQUIRE(a.cofactor(0, 1) == 12);
|
|
REQUIRE(a.cofactor(0, 2) == -46);
|
|
REQUIRE(a.determinant() == -196);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Calculating the determinant of a 4x4 matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{-2, -8, 3, 5},
|
|
{-3, 1, 7, 3},
|
|
{ 1, 2, -9, 6},
|
|
{-6, 7, 7, -9}
|
|
};
|
|
|
|
REQUIRE(a.cofactor(0, 0) == 690);
|
|
REQUIRE(a.cofactor(0, 1) == 447);
|
|
REQUIRE(a.cofactor(0, 2) == 210);
|
|
REQUIRE(a.cofactor(0, 3) == 51);
|
|
REQUIRE(a.determinant() == -4071);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Testing an invertible matrix for invertibility", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{6, 4, 4, 4},
|
|
{5, 5, 7, 6},
|
|
{4, -9, 3, -7},
|
|
{9, 1, 7, -6}
|
|
};
|
|
|
|
REQUIRE(a.determinant() == -2120);
|
|
REQUIRE(a.invertible() == true);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Testing an noninvertible matrix for invertibility", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{-4, 2, -2, -3},
|
|
{ 9, 6, 2, 6},
|
|
{ 0, -5, 1, -5},
|
|
{ 0, 0, 0, 0}
|
|
};
|
|
|
|
REQUIRE(a.determinant() == 0);
|
|
REQUIRE(a.invertible() == false);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Calculating the inverse of a matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{-5, 2, 6, -8},
|
|
{ 1, -5, 1, 8},
|
|
{ 7, 7, -6, -7},
|
|
{ 1, -3, 7, 4}
|
|
};
|
|
|
|
Matrix a_inverted = {
|
|
{ 0.21805, 0.45113, 0.24060, -0.04511},
|
|
{-0.80827, -1.45677, -0.44361, 0.52068},
|
|
{-0.07895, -0.22368, -0.05263, 0.19737},
|
|
{-0.52256, -0.81391, -0.30075, 0.30639}
|
|
};
|
|
|
|
Matrix b = a.inverse();
|
|
|
|
REQUIRE(a.determinant() == 532);
|
|
REQUIRE(a.cofactor(2, 3) == -160);
|
|
REQUIRE(b[3][2] == -160.0 / 532.0);
|
|
REQUIRE(a.cofactor(3, 2) == 105);
|
|
REQUIRE(b[2][3] == 105.0 / 532.0);
|
|
REQUIRE(b == a_inverted);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Calculating the inverse of another matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{ 8, -5, 9, 2},
|
|
{ 7, 5, 6, 1},
|
|
{-6, 0, 9, 6},
|
|
{-3, 0, -9, -4}
|
|
};
|
|
Matrix a_inverted = {
|
|
{-0.15385, -0.15385, -0.28205, -0.53846},
|
|
{-0.07692, 0.12308, 0.02564, 0.03077},
|
|
{ 0.35897, 0.35897, 0.43590, 0.92308},
|
|
{-0.69231, -0.69231, -0.76923, -1.92308}
|
|
};
|
|
|
|
REQUIRE(a.inverse() == a_inverted);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Calculating the inverse of third matrix", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{ 9, 3, 0, 9},
|
|
{-5, -2, -6, -3},
|
|
{-4, 9, 6, 4},
|
|
{-7, 6, 6, 2}
|
|
};
|
|
Matrix a_inverted = {
|
|
{-0.04074, -0.07778, 0.14444, -0.22222},
|
|
{-0.07778, 0.03333, 0.36667, -0.33333},
|
|
{-0.02901, -0.14630, -0.10926, 0.12963},
|
|
{ 0.17778, 0.06667, -0.26667, 0.33333}
|
|
};
|
|
|
|
REQUIRE(a.inverse() == a_inverted);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
TEST_CASE("[Matrix] Multiplying a product by its inverse", "[Matrix]")
|
|
{
|
|
Matrix a = {
|
|
{ 3, -9, 7, 3},
|
|
{ 3, -8, 2, -9},
|
|
{-4, 4, 4, 1},
|
|
{-6, 5, -1, 1}
|
|
};
|
|
Matrix b = {
|
|
{8, 2, 2, 2},
|
|
{3, -1, 7, 0},
|
|
{7, 0, 5, 4},
|
|
{6, -2, 0, 5}
|
|
};
|
|
Matrix c = a * b;
|
|
REQUIRE(c * b.inverse() == a);
|
|
}
|