[FEAT] Add cone
This commit is contained in:
@@ -33,4 +33,4 @@ The Web Site of the book: http://raytracerchallenge.com/
|
||||
|
||||
| Chapiter 12 | Chapiter 13 | Chapiter 14 |
|
||||
|:------------------------: | :---------------------------: | :----------------------------: |
|
||||
| | | |
|
||||
| |  | |
|
||||
|
||||
BIN
data/chapter_13.png
Normal file
BIN
data/chapter_13.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 87 KiB |
@@ -34,6 +34,7 @@ add_library(raytracing
|
||||
src/renderer/ray.cpp
|
||||
src/renderer/world.cpp
|
||||
|
||||
src/shapes/cone.cpp
|
||||
src/shapes/cube.cpp
|
||||
src/shapes/cylinder.cpp
|
||||
src/shapes/plane.cpp
|
||||
|
||||
@@ -46,6 +46,7 @@
|
||||
#include "renderer/ray.h"
|
||||
#include "renderer/world.h"
|
||||
|
||||
#include "shapes/cone.h"
|
||||
#include "shapes/cube.h"
|
||||
#include "shapes/cylinder.h"
|
||||
#include "shapes/plane.h"
|
||||
|
||||
210
raytracing/src/shapes/cone.cpp
Normal file
210
raytracing/src/shapes/cone.cpp
Normal file
@@ -0,0 +1,210 @@
|
||||
/*!
|
||||
* cone.cpp
|
||||
*
|
||||
* Copyright (c) 2024, NADAL Jean-Baptiste. All rights reserved.
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
* MA 02110-1301 USA
|
||||
*
|
||||
* @Author: NADAL Jean-Baptiste
|
||||
* @Date: 21/03/2024
|
||||
*
|
||||
*/
|
||||
|
||||
// This is an independent project of an individual developer. Dear PVS-Studio, please check it.
|
||||
// PVS-Studio Static Code Analyzer for C, C++, C#, and Java: http://www.viva64.com
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "core/common.h"
|
||||
#include "core/intersections.h"
|
||||
|
||||
#include "cone.h"
|
||||
|
||||
using namespace Raytracer;
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
Intersections Cone::local_intersect(const Ray &a_ray)
|
||||
{
|
||||
double the_a, the_b, the_c, the_discriminant;
|
||||
double the_t0, the_t1;
|
||||
double the_y0, the_y1;
|
||||
Intersections the_intersections;
|
||||
const Tuple &the_ray_direction = a_ray.direction();
|
||||
const Tuple &the_ray_origin = a_ray.origin();
|
||||
|
||||
the_a = std::pow(the_ray_direction.x(), 2) - std::pow(the_ray_direction.y(), 2) + std::pow(the_ray_direction.z(), 2);
|
||||
the_b = 2 * the_ray_origin.x() * the_ray_direction.x() -
|
||||
2 * the_ray_origin.y() * the_ray_direction.y() +
|
||||
2 * the_ray_origin.z() * the_ray_direction.z();
|
||||
the_c = std::pow(the_ray_origin.x(), 2) - std::pow(the_ray_origin.y(), 2) + std::pow(the_ray_origin.z(), 2);
|
||||
|
||||
if (double_equal(the_a, 0) && !double_equal(the_b, 0))
|
||||
{
|
||||
double the_t = -the_c / (2 * the_b);
|
||||
the_intersections.add(Intersection(the_t, this));
|
||||
}
|
||||
|
||||
// Ray is parallel to the y axis
|
||||
if (double_equal(the_a, 0) == false)
|
||||
{
|
||||
the_discriminant = std::pow(the_b, 2) - 4 * the_a * the_c;
|
||||
|
||||
if (the_discriminant < 0)
|
||||
{
|
||||
return the_intersections;
|
||||
}
|
||||
|
||||
the_t0 = (-the_b - std::sqrt(the_discriminant)) / (2 * the_a);
|
||||
the_t1 = (-the_b + std::sqrt(the_discriminant)) / (2 * the_a);
|
||||
if (the_t0 > the_t1)
|
||||
{
|
||||
std::swap(the_t0, the_t1);
|
||||
}
|
||||
|
||||
the_y0 = the_ray_origin.y() + the_t0 * the_ray_direction.y();
|
||||
if ((m_minimum < the_y0) && (the_y0 < m_maximum))
|
||||
{
|
||||
the_intersections.add(Intersection(the_t0, this));
|
||||
}
|
||||
|
||||
the_y1 = the_ray_origin.y() + the_t1 * the_ray_direction.y();
|
||||
if ((m_minimum < the_y1) && (the_y1 < m_maximum))
|
||||
{
|
||||
the_intersections.add(Intersection(the_t1, this));
|
||||
}
|
||||
}
|
||||
|
||||
// Caps
|
||||
intersect_caps(a_ray, the_intersections);
|
||||
|
||||
return the_intersections;
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
Tuple Cone::local_normal_at(const Tuple &a_local_point) const
|
||||
{
|
||||
|
||||
double the_distance, the_y;
|
||||
// Compute the square of the distance from the y axis
|
||||
the_distance = std::pow(a_local_point.x(), 2) + std::pow(a_local_point.z(), 2);
|
||||
if ((the_distance < 1) && (a_local_point.y() >= m_maximum - kEpsilon))
|
||||
{
|
||||
return Tuple::Vector(0, 1, 0);
|
||||
}
|
||||
else if ((the_distance < 1) && (a_local_point.y() <= m_minimum + kEpsilon))
|
||||
{
|
||||
return Tuple::Vector(0, -1, 0);
|
||||
}
|
||||
|
||||
the_y = sqrt(the_distance);
|
||||
if (a_local_point.y() > 0)
|
||||
{
|
||||
the_y = -the_y;
|
||||
}
|
||||
|
||||
return Tuple::Vector(a_local_point.x(), the_y, a_local_point.z());
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
double Cone::minimum(void)
|
||||
{
|
||||
return m_minimum;
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
void Cone::set_minimum(double a_value)
|
||||
{
|
||||
m_minimum = a_value;
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
double Cone::maximum(void)
|
||||
{
|
||||
return m_maximum;
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
void Cone::set_maximum(double a_value)
|
||||
{
|
||||
m_maximum = a_value;
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
bool Cone::closed(void)
|
||||
{
|
||||
return m_closed;
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
void Cone::set_closed(bool a_state)
|
||||
{
|
||||
m_closed = a_state;
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
bool Cone::check_cap(const Ray &a_ray, double a_distance_t, double an_y)
|
||||
{
|
||||
double the_x, the_z;
|
||||
|
||||
const Tuple &the_ray_direction = a_ray.direction();
|
||||
const Tuple &the_ray_origin = a_ray.origin();
|
||||
|
||||
the_x = the_ray_origin.x() + a_distance_t * the_ray_direction.x();
|
||||
the_z = the_ray_origin.z() + a_distance_t * the_ray_direction.z();
|
||||
|
||||
return (std::pow(the_x, 2) + std::pow(the_z, 2)) <= std::pow(an_y, 2);
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
void Cone::intersect_caps(const Ray &a_ray, Intersections &an_xs)
|
||||
{
|
||||
double the_distance_t;
|
||||
const Tuple &the_ray_direction = a_ray.direction();
|
||||
|
||||
// Caps only matter if the cylinder is closed. and might possibility be intersected the ray.
|
||||
if ((m_closed == false) or (double_equal(the_ray_direction.y(), 0)))
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Check for an intersection with the lower end cap by intersecting
|
||||
// the ray with the plane at y = cyl.minimum
|
||||
the_distance_t = (m_minimum - a_ray.origin().y()) / the_ray_direction.y();
|
||||
if (check_cap(a_ray, the_distance_t, m_minimum))
|
||||
{
|
||||
an_xs.add(Intersection(the_distance_t, this));
|
||||
}
|
||||
|
||||
// Check for an intersection with the upper end cap by intersecting
|
||||
// the ray with the plane at y = cyl.maximum
|
||||
the_distance_t = (m_maximum - a_ray.origin().y()) / the_ray_direction.y();
|
||||
if (check_cap(a_ray, the_distance_t, m_maximum))
|
||||
{
|
||||
an_xs.add(Intersection(the_distance_t, this));
|
||||
}
|
||||
}
|
||||
66
raytracing/src/shapes/cone.h
Normal file
66
raytracing/src/shapes/cone.h
Normal file
@@ -0,0 +1,66 @@
|
||||
/*!
|
||||
* cone.h
|
||||
*
|
||||
* Copyright (c) 2024, NADAL Jean-Baptiste. All rights reserved.
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
* MA 02110-1301 USA
|
||||
*
|
||||
* @Author: NADAL Jean-Baptiste
|
||||
* @Date: 21/03/2024
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef _RAYTRACER_CONE_H
|
||||
#define _RAYTRACER_CONE_H
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "shapes/shape.h"
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
namespace Raytracer
|
||||
{
|
||||
class Cone : public Shape
|
||||
{
|
||||
public:
|
||||
Cone(void) = default;
|
||||
Intersections local_intersect(const Ray &a_ray) override;
|
||||
Tuple local_normal_at(const Tuple &a_local_point) const override;
|
||||
|
||||
double minimum(void);
|
||||
void set_minimum(double a_value);
|
||||
|
||||
double maximum(void);
|
||||
void set_maximum(double a_value);
|
||||
|
||||
bool closed(void);
|
||||
void set_closed(bool a_state);
|
||||
|
||||
private:
|
||||
bool check_cap(const Ray &a_ray, double a_distance_t, double an_y);
|
||||
void intersect_caps(const Ray &a_ray, Intersections &an_xs);
|
||||
|
||||
private:
|
||||
double m_minimum = -std::numeric_limits<double>::infinity();
|
||||
double m_maximum = std::numeric_limits<double>::infinity();
|
||||
bool m_closed = false;
|
||||
};
|
||||
}; // namespace Raytracer
|
||||
|
||||
#endif // _RAYTRACER_CONE_H
|
||||
@@ -173,16 +173,17 @@ bool Cylinder::check_cap(const Ray &a_ray, double a_distance_t)
|
||||
void Cylinder::intersect_caps(const Ray &a_ray, Intersections &an_xs)
|
||||
{
|
||||
double the_distance_t;
|
||||
const Tuple &the_ray_direction = a_ray.direction();
|
||||
|
||||
// Caps only matter if the cylinder is closed. and might possibility be intersected the ray.
|
||||
if ((m_closed == false) or (double_equal(a_ray.direction().y(), 0)))
|
||||
if ((m_closed == false) or (double_equal(the_ray_direction.y(), 0)))
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Check for an intersection with the lower end cap by intersecting
|
||||
// the ray with the plane at y = cyl.minimum
|
||||
the_distance_t = (m_minimum - a_ray.origin().y()) / a_ray.direction().y();
|
||||
the_distance_t = (m_minimum - a_ray.origin().y()) / the_ray_direction.y();
|
||||
if (check_cap(a_ray, the_distance_t))
|
||||
{
|
||||
an_xs.add(Intersection(the_distance_t, this));
|
||||
@@ -190,7 +191,7 @@ void Cylinder::intersect_caps(const Ray &a_ray, Intersections &an_xs)
|
||||
|
||||
// Check for an intersection with the upper end cap by intersecting
|
||||
// the ray with the plane at y = cyl.maximum
|
||||
the_distance_t = (m_maximum - a_ray.origin().y()) / a_ray.direction().y();
|
||||
the_distance_t = (m_maximum - a_ray.origin().y()) / the_ray_direction.y();
|
||||
if (check_cap(a_ray, the_distance_t))
|
||||
{
|
||||
an_xs.add(Intersection(the_distance_t, this));
|
||||
|
||||
@@ -63,6 +63,16 @@ public:
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
class ConeTestConstrained
|
||||
{
|
||||
public:
|
||||
Tuple origin;
|
||||
Tuple direction;
|
||||
uint16_t count;
|
||||
};
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
SCENARIO("A Ray misses a cylinder", "[features/cylinders.feature]")
|
||||
{
|
||||
// | origin | direction |
|
||||
@@ -163,7 +173,7 @@ SCENARIO("Normal vector on a cylinder", "[features/cylinders.feature]")
|
||||
Cylinder cyl;
|
||||
WHEN("n <- local_normal_at(cyl,<point>)")
|
||||
{
|
||||
for (int i = 0; i < 3; i++)
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
Tuple p = the_test[i].point;
|
||||
Tuple normal = cyl.local_normal_at(p);
|
||||
@@ -362,3 +372,162 @@ SCENARIO("The normal vector on the cylinder's end caps", "[features/cylinders.fe
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
SCENARIO("Intersecting a cone with a ray", "[features/cones.feature]")
|
||||
{
|
||||
// | origin | direction | t0 | t1 |
|
||||
// | point(0, 0, -5) | vector(0, 0, 1) | 5 | 5 |
|
||||
// | point(0, 0, -5) | vector(1, 1, 1) | 8.66025 | 8.66025 |
|
||||
// | point(1, 1, -5) | vector(-0.5, -1, 1) | 4.55006 | 49.44994 |
|
||||
CylinderTestIntersect the_test[] = {
|
||||
{Tuple::Point(0, 0, -5), Tuple::Vector(0, 0, 1), 5, 5},
|
||||
{Tuple::Point(0, 0, -5), Tuple::Vector(1, 1, 1), 8.66025, 8.66025},
|
||||
{Tuple::Point(1, 1, -5), Tuple::Vector(-0.5, -1, 1), 4.55006, 49.44994}
|
||||
};
|
||||
GIVEN("shape <- cone()")
|
||||
{
|
||||
Cone shape;
|
||||
AND_GIVEN("direction <- normalize(<direction>)")
|
||||
{
|
||||
AND_GIVEN("r <- ray(<origin>, direction)")
|
||||
{
|
||||
WHEN("xs <- local_intersect(shape, r)")
|
||||
{
|
||||
for (int i = 0; i < 5; i++)
|
||||
{
|
||||
Tuple direction = the_test[i].direction.normalize();
|
||||
Ray r(the_test[i].origin, direction);
|
||||
Intersections xs = shape.local_intersect(r);
|
||||
THEN("xs.count = 2")
|
||||
{
|
||||
REQUIRE(xs.count() == 2);
|
||||
}
|
||||
AND_THEN("xs[0].t = <t1>")
|
||||
{
|
||||
REQUIRE(xs[0].distance_t() == the_test[i].t0);
|
||||
}
|
||||
AND_THEN("xs[1].t = <t2>")
|
||||
{
|
||||
REQUIRE(xs[1].distance_t() == the_test[i].t1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
SCENARIO("Intersecting a cone with a ray parallel ton one of its halves", "[features/cones.feature]")
|
||||
{
|
||||
GIVEN("shape <- cone()")
|
||||
{
|
||||
Cone shape;
|
||||
AND_GIVEN("direction <- normalize(vector(0, 1, 1))")
|
||||
{
|
||||
Tuple direction = Tuple::Vector(0, 1, 1).normalize();
|
||||
AND_GIVEN("r <- ray(point(0, 0, -1), direction)")
|
||||
{
|
||||
Ray r(Tuple::Point(0, 0, -1), direction);
|
||||
WHEN("xs <- local_intersect(shape, r)")
|
||||
{
|
||||
Intersections xs = shape.local_intersect(r);
|
||||
THEN("xs.count = 1")
|
||||
{
|
||||
REQUIRE(xs.count() == 1);
|
||||
}
|
||||
AND_THEN("xs[0].t = 0.35355")
|
||||
{
|
||||
REQUIRE(double_equal(xs[0].distance_t(), 0.35355));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
SCENARIO("Intersecting a cone's end caps", "[features/cones.feature]")
|
||||
{
|
||||
// | origin | direction | count |
|
||||
// | point(0, 0, -5) | vector(0, 1, 0) | 0 |
|
||||
// | point(0, 0, -0.25) | vector(0, 1, 1) | 2 |
|
||||
// | point(0, 0, -0.25) | vector(0, 1, 0) | 4 |
|
||||
|
||||
ConeTestConstrained the_test[] = {
|
||||
{Tuple::Point(0, 0, -5), Tuple::Vector(0, 1, 0), 0},
|
||||
{Tuple::Point(0, 0, -0.25), Tuple::Vector(0, 1, 1), 2},
|
||||
{Tuple::Point(0, 0, -0.25), Tuple::Vector(0, 1, 0), 4}
|
||||
};
|
||||
GIVEN("shape <- cone()")
|
||||
{
|
||||
Cone shape;
|
||||
AND_GIVEN("shape.minimum <- 0.5")
|
||||
{
|
||||
shape.set_minimum(0.5);
|
||||
AND_GIVEN("shape.maximum <- 0.5")
|
||||
{
|
||||
shape.set_maximum(0.5);
|
||||
AND_GIVEN("shape.closed <- true")
|
||||
{
|
||||
shape.set_closed(true);
|
||||
AND_GIVEN("direction <- normalize(<direction>)")
|
||||
{
|
||||
AND_GIVEN("r <- ray(<origin>, direction)")
|
||||
{
|
||||
WHEN("xs <- local_intersect(shape,r)")
|
||||
{
|
||||
for (int i = 0; i < 5; i++)
|
||||
{
|
||||
Tuple direction = the_test[i].direction.normalize();
|
||||
Ray r(the_test[i].origin, direction);
|
||||
Intersections xs = shape.local_intersect(r);
|
||||
THEN("xs.count = <count>")
|
||||
{
|
||||
REQUIRE(xs.count() == the_test[i].count);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
SCENARIO("Computing the normal vector on a cone", "[features/cones.feature]")
|
||||
{
|
||||
// | point | normal |
|
||||
// | point(0, 0, 0) | vector(0, 0, 0) |
|
||||
// | point(1, 1, 1) | vector(1, -sqrt(2), 1) |
|
||||
// | point(-1, -1, 0) | vector(-1, 1, 0) |
|
||||
CylinderTestNormal the_test[] = {
|
||||
{ Tuple::Point(0, 0, 0), Tuple::Vector(0, 0, 0)},
|
||||
{ Tuple::Point(1, 1, 1), Tuple::Vector(1, -sqrt(2), 1)},
|
||||
{Tuple::Point(-1, -1, 0), Tuple::Vector(-1, 1, 0)}
|
||||
};
|
||||
|
||||
GIVEN("shape <- cone()")
|
||||
{
|
||||
Cone shape;
|
||||
WHEN("n <- local_normal_at(shape, <point>)")
|
||||
{
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
Tuple p = the_test[i].point;
|
||||
Tuple normal = shape.local_normal_at(p);
|
||||
THEN("n = <normal>")
|
||||
{
|
||||
REQUIRE(normal == the_test[i].normal);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user