[FEAT] Add cone

This commit is contained in:
NADAL Jean-Baptiste
2024-03-21 19:10:01 +01:00
parent 9a8e764b56
commit b3490b146e
8 changed files with 453 additions and 5 deletions

View File

@@ -33,4 +33,4 @@ The Web Site of the book: http://raytracerchallenge.com/
| Chapiter 12 | Chapiter 13 | Chapiter 14 | | Chapiter 12 | Chapiter 13 | Chapiter 14 |
|:------------------------: | :---------------------------: | :----------------------------: | |:------------------------: | :---------------------------: | :----------------------------: |
|![12](data/chapter_12.png) | | | |![12](data/chapter_12.png) | ![13](data/chapter_13.png) | |

BIN
data/chapter_13.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

View File

@@ -34,6 +34,7 @@ add_library(raytracing
src/renderer/ray.cpp src/renderer/ray.cpp
src/renderer/world.cpp src/renderer/world.cpp
src/shapes/cone.cpp
src/shapes/cube.cpp src/shapes/cube.cpp
src/shapes/cylinder.cpp src/shapes/cylinder.cpp
src/shapes/plane.cpp src/shapes/plane.cpp

View File

@@ -46,6 +46,7 @@
#include "renderer/ray.h" #include "renderer/ray.h"
#include "renderer/world.h" #include "renderer/world.h"
#include "shapes/cone.h"
#include "shapes/cube.h" #include "shapes/cube.h"
#include "shapes/cylinder.h" #include "shapes/cylinder.h"
#include "shapes/plane.h" #include "shapes/plane.h"

View File

@@ -0,0 +1,210 @@
/*!
* cone.cpp
*
* Copyright (c) 2024, NADAL Jean-Baptiste. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*
* @Author: NADAL Jean-Baptiste
* @Date: 21/03/2024
*
*/
// This is an independent project of an individual developer. Dear PVS-Studio, please check it.
// PVS-Studio Static Code Analyzer for C, C++, C#, and Java: http://www.viva64.com
/* ------------------------------------------------------------------------- */
#include <cmath>
#include "core/common.h"
#include "core/intersections.h"
#include "cone.h"
using namespace Raytracer;
/* ------------------------------------------------------------------------- */
Intersections Cone::local_intersect(const Ray &a_ray)
{
double the_a, the_b, the_c, the_discriminant;
double the_t0, the_t1;
double the_y0, the_y1;
Intersections the_intersections;
const Tuple &the_ray_direction = a_ray.direction();
const Tuple &the_ray_origin = a_ray.origin();
the_a = std::pow(the_ray_direction.x(), 2) - std::pow(the_ray_direction.y(), 2) + std::pow(the_ray_direction.z(), 2);
the_b = 2 * the_ray_origin.x() * the_ray_direction.x() -
2 * the_ray_origin.y() * the_ray_direction.y() +
2 * the_ray_origin.z() * the_ray_direction.z();
the_c = std::pow(the_ray_origin.x(), 2) - std::pow(the_ray_origin.y(), 2) + std::pow(the_ray_origin.z(), 2);
if (double_equal(the_a, 0) && !double_equal(the_b, 0))
{
double the_t = -the_c / (2 * the_b);
the_intersections.add(Intersection(the_t, this));
}
// Ray is parallel to the y axis
if (double_equal(the_a, 0) == false)
{
the_discriminant = std::pow(the_b, 2) - 4 * the_a * the_c;
if (the_discriminant < 0)
{
return the_intersections;
}
the_t0 = (-the_b - std::sqrt(the_discriminant)) / (2 * the_a);
the_t1 = (-the_b + std::sqrt(the_discriminant)) / (2 * the_a);
if (the_t0 > the_t1)
{
std::swap(the_t0, the_t1);
}
the_y0 = the_ray_origin.y() + the_t0 * the_ray_direction.y();
if ((m_minimum < the_y0) && (the_y0 < m_maximum))
{
the_intersections.add(Intersection(the_t0, this));
}
the_y1 = the_ray_origin.y() + the_t1 * the_ray_direction.y();
if ((m_minimum < the_y1) && (the_y1 < m_maximum))
{
the_intersections.add(Intersection(the_t1, this));
}
}
// Caps
intersect_caps(a_ray, the_intersections);
return the_intersections;
}
/* ------------------------------------------------------------------------- */
Tuple Cone::local_normal_at(const Tuple &a_local_point) const
{
double the_distance, the_y;
// Compute the square of the distance from the y axis
the_distance = std::pow(a_local_point.x(), 2) + std::pow(a_local_point.z(), 2);
if ((the_distance < 1) && (a_local_point.y() >= m_maximum - kEpsilon))
{
return Tuple::Vector(0, 1, 0);
}
else if ((the_distance < 1) && (a_local_point.y() <= m_minimum + kEpsilon))
{
return Tuple::Vector(0, -1, 0);
}
the_y = sqrt(the_distance);
if (a_local_point.y() > 0)
{
the_y = -the_y;
}
return Tuple::Vector(a_local_point.x(), the_y, a_local_point.z());
}
/* ------------------------------------------------------------------------- */
double Cone::minimum(void)
{
return m_minimum;
}
/* ------------------------------------------------------------------------- */
void Cone::set_minimum(double a_value)
{
m_minimum = a_value;
}
/* ------------------------------------------------------------------------- */
double Cone::maximum(void)
{
return m_maximum;
}
/* ------------------------------------------------------------------------- */
void Cone::set_maximum(double a_value)
{
m_maximum = a_value;
}
/* ------------------------------------------------------------------------- */
bool Cone::closed(void)
{
return m_closed;
}
/* ------------------------------------------------------------------------- */
void Cone::set_closed(bool a_state)
{
m_closed = a_state;
}
/* ------------------------------------------------------------------------- */
bool Cone::check_cap(const Ray &a_ray, double a_distance_t, double an_y)
{
double the_x, the_z;
const Tuple &the_ray_direction = a_ray.direction();
const Tuple &the_ray_origin = a_ray.origin();
the_x = the_ray_origin.x() + a_distance_t * the_ray_direction.x();
the_z = the_ray_origin.z() + a_distance_t * the_ray_direction.z();
return (std::pow(the_x, 2) + std::pow(the_z, 2)) <= std::pow(an_y, 2);
}
/* ------------------------------------------------------------------------- */
void Cone::intersect_caps(const Ray &a_ray, Intersections &an_xs)
{
double the_distance_t;
const Tuple &the_ray_direction = a_ray.direction();
// Caps only matter if the cylinder is closed. and might possibility be intersected the ray.
if ((m_closed == false) or (double_equal(the_ray_direction.y(), 0)))
{
return;
}
// Check for an intersection with the lower end cap by intersecting
// the ray with the plane at y = cyl.minimum
the_distance_t = (m_minimum - a_ray.origin().y()) / the_ray_direction.y();
if (check_cap(a_ray, the_distance_t, m_minimum))
{
an_xs.add(Intersection(the_distance_t, this));
}
// Check for an intersection with the upper end cap by intersecting
// the ray with the plane at y = cyl.maximum
the_distance_t = (m_maximum - a_ray.origin().y()) / the_ray_direction.y();
if (check_cap(a_ray, the_distance_t, m_maximum))
{
an_xs.add(Intersection(the_distance_t, this));
}
}

View File

@@ -0,0 +1,66 @@
/*!
* cone.h
*
* Copyright (c) 2024, NADAL Jean-Baptiste. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*
* @Author: NADAL Jean-Baptiste
* @Date: 21/03/2024
*
*/
#ifndef _RAYTRACER_CONE_H
#define _RAYTRACER_CONE_H
/* ------------------------------------------------------------------------- */
#include <cmath>
#include "shapes/shape.h"
/* ------------------------------------------------------------------------- */
namespace Raytracer
{
class Cone : public Shape
{
public:
Cone(void) = default;
Intersections local_intersect(const Ray &a_ray) override;
Tuple local_normal_at(const Tuple &a_local_point) const override;
double minimum(void);
void set_minimum(double a_value);
double maximum(void);
void set_maximum(double a_value);
bool closed(void);
void set_closed(bool a_state);
private:
bool check_cap(const Ray &a_ray, double a_distance_t, double an_y);
void intersect_caps(const Ray &a_ray, Intersections &an_xs);
private:
double m_minimum = -std::numeric_limits<double>::infinity();
double m_maximum = std::numeric_limits<double>::infinity();
bool m_closed = false;
};
}; // namespace Raytracer
#endif // _RAYTRACER_CONE_H

View File

@@ -173,16 +173,17 @@ bool Cylinder::check_cap(const Ray &a_ray, double a_distance_t)
void Cylinder::intersect_caps(const Ray &a_ray, Intersections &an_xs) void Cylinder::intersect_caps(const Ray &a_ray, Intersections &an_xs)
{ {
double the_distance_t; double the_distance_t;
const Tuple &the_ray_direction = a_ray.direction();
// Caps only matter if the cylinder is closed. and might possibility be intersected the ray. // Caps only matter if the cylinder is closed. and might possibility be intersected the ray.
if ((m_closed == false) or (double_equal(a_ray.direction().y(), 0))) if ((m_closed == false) or (double_equal(the_ray_direction.y(), 0)))
{ {
return; return;
} }
// Check for an intersection with the lower end cap by intersecting // Check for an intersection with the lower end cap by intersecting
// the ray with the plane at y = cyl.minimum // the ray with the plane at y = cyl.minimum
the_distance_t = (m_minimum - a_ray.origin().y()) / a_ray.direction().y(); the_distance_t = (m_minimum - a_ray.origin().y()) / the_ray_direction.y();
if (check_cap(a_ray, the_distance_t)) if (check_cap(a_ray, the_distance_t))
{ {
an_xs.add(Intersection(the_distance_t, this)); an_xs.add(Intersection(the_distance_t, this));
@@ -190,7 +191,7 @@ void Cylinder::intersect_caps(const Ray &a_ray, Intersections &an_xs)
// Check for an intersection with the upper end cap by intersecting // Check for an intersection with the upper end cap by intersecting
// the ray with the plane at y = cyl.maximum // the ray with the plane at y = cyl.maximum
the_distance_t = (m_maximum - a_ray.origin().y()) / a_ray.direction().y(); the_distance_t = (m_maximum - a_ray.origin().y()) / the_ray_direction.y();
if (check_cap(a_ray, the_distance_t)) if (check_cap(a_ray, the_distance_t))
{ {
an_xs.add(Intersection(the_distance_t, this)); an_xs.add(Intersection(the_distance_t, this));

View File

@@ -63,6 +63,16 @@ public:
/* ------------------------------------------------------------------------- */ /* ------------------------------------------------------------------------- */
class ConeTestConstrained
{
public:
Tuple origin;
Tuple direction;
uint16_t count;
};
/* ------------------------------------------------------------------------- */
SCENARIO("A Ray misses a cylinder", "[features/cylinders.feature]") SCENARIO("A Ray misses a cylinder", "[features/cylinders.feature]")
{ {
// | origin | direction | // | origin | direction |
@@ -163,7 +173,7 @@ SCENARIO("Normal vector on a cylinder", "[features/cylinders.feature]")
Cylinder cyl; Cylinder cyl;
WHEN("n <- local_normal_at(cyl,<point>)") WHEN("n <- local_normal_at(cyl,<point>)")
{ {
for (int i = 0; i < 3; i++) for (int i = 0; i < 4; i++)
{ {
Tuple p = the_test[i].point; Tuple p = the_test[i].point;
Tuple normal = cyl.local_normal_at(p); Tuple normal = cyl.local_normal_at(p);
@@ -362,3 +372,162 @@ SCENARIO("The normal vector on the cylinder's end caps", "[features/cylinders.fe
} }
} }
} }
/* ------------------------------------------------------------------------- */
SCENARIO("Intersecting a cone with a ray", "[features/cones.feature]")
{
// | origin | direction | t0 | t1 |
// | point(0, 0, -5) | vector(0, 0, 1) | 5 | 5 |
// | point(0, 0, -5) | vector(1, 1, 1) | 8.66025 | 8.66025 |
// | point(1, 1, -5) | vector(-0.5, -1, 1) | 4.55006 | 49.44994 |
CylinderTestIntersect the_test[] = {
{Tuple::Point(0, 0, -5), Tuple::Vector(0, 0, 1), 5, 5},
{Tuple::Point(0, 0, -5), Tuple::Vector(1, 1, 1), 8.66025, 8.66025},
{Tuple::Point(1, 1, -5), Tuple::Vector(-0.5, -1, 1), 4.55006, 49.44994}
};
GIVEN("shape <- cone()")
{
Cone shape;
AND_GIVEN("direction <- normalize(<direction>)")
{
AND_GIVEN("r <- ray(<origin>, direction)")
{
WHEN("xs <- local_intersect(shape, r)")
{
for (int i = 0; i < 5; i++)
{
Tuple direction = the_test[i].direction.normalize();
Ray r(the_test[i].origin, direction);
Intersections xs = shape.local_intersect(r);
THEN("xs.count = 2")
{
REQUIRE(xs.count() == 2);
}
AND_THEN("xs[0].t = <t1>")
{
REQUIRE(xs[0].distance_t() == the_test[i].t0);
}
AND_THEN("xs[1].t = <t2>")
{
REQUIRE(xs[1].distance_t() == the_test[i].t1);
}
}
}
}
}
}
}
/* ------------------------------------------------------------------------- */
SCENARIO("Intersecting a cone with a ray parallel ton one of its halves", "[features/cones.feature]")
{
GIVEN("shape <- cone()")
{
Cone shape;
AND_GIVEN("direction <- normalize(vector(0, 1, 1))")
{
Tuple direction = Tuple::Vector(0, 1, 1).normalize();
AND_GIVEN("r <- ray(point(0, 0, -1), direction)")
{
Ray r(Tuple::Point(0, 0, -1), direction);
WHEN("xs <- local_intersect(shape, r)")
{
Intersections xs = shape.local_intersect(r);
THEN("xs.count = 1")
{
REQUIRE(xs.count() == 1);
}
AND_THEN("xs[0].t = 0.35355")
{
REQUIRE(double_equal(xs[0].distance_t(), 0.35355));
}
}
}
}
}
}
/* ------------------------------------------------------------------------- */
SCENARIO("Intersecting a cone's end caps", "[features/cones.feature]")
{
// | origin | direction | count |
// | point(0, 0, -5) | vector(0, 1, 0) | 0 |
// | point(0, 0, -0.25) | vector(0, 1, 1) | 2 |
// | point(0, 0, -0.25) | vector(0, 1, 0) | 4 |
ConeTestConstrained the_test[] = {
{Tuple::Point(0, 0, -5), Tuple::Vector(0, 1, 0), 0},
{Tuple::Point(0, 0, -0.25), Tuple::Vector(0, 1, 1), 2},
{Tuple::Point(0, 0, -0.25), Tuple::Vector(0, 1, 0), 4}
};
GIVEN("shape <- cone()")
{
Cone shape;
AND_GIVEN("shape.minimum <- 0.5")
{
shape.set_minimum(0.5);
AND_GIVEN("shape.maximum <- 0.5")
{
shape.set_maximum(0.5);
AND_GIVEN("shape.closed <- true")
{
shape.set_closed(true);
AND_GIVEN("direction <- normalize(<direction>)")
{
AND_GIVEN("r <- ray(<origin>, direction)")
{
WHEN("xs <- local_intersect(shape,r)")
{
for (int i = 0; i < 5; i++)
{
Tuple direction = the_test[i].direction.normalize();
Ray r(the_test[i].origin, direction);
Intersections xs = shape.local_intersect(r);
THEN("xs.count = <count>")
{
REQUIRE(xs.count() == the_test[i].count);
}
}
}
}
}
}
}
}
}
}
/* ------------------------------------------------------------------------- */
SCENARIO("Computing the normal vector on a cone", "[features/cones.feature]")
{
// | point | normal |
// | point(0, 0, 0) | vector(0, 0, 0) |
// | point(1, 1, 1) | vector(1, -sqrt(2), 1) |
// | point(-1, -1, 0) | vector(-1, 1, 0) |
CylinderTestNormal the_test[] = {
{ Tuple::Point(0, 0, 0), Tuple::Vector(0, 0, 0)},
{ Tuple::Point(1, 1, 1), Tuple::Vector(1, -sqrt(2), 1)},
{Tuple::Point(-1, -1, 0), Tuple::Vector(-1, 1, 0)}
};
GIVEN("shape <- cone()")
{
Cone shape;
WHEN("n <- local_normal_at(shape, <point>)")
{
for (int i = 0; i < 3; i++)
{
Tuple p = the_test[i].point;
Tuple normal = shape.local_normal_at(p);
THEN("n = <normal>")
{
REQUIRE(normal == the_test[i].normal);
}
}
}
}
}